direct product, metabelian, nilpotent (class 2), monomial
Aliases: C24×3- 1+2, C9⋊2(C23×C6), (C22×C18)⋊8C6, (C23×C18)⋊5C3, C18⋊2(C22×C6), C32.(C23×C6), (C2×C6).40C62, C6.17(C2×C62), C62.44(C2×C6), (C2×C62).18C6, C3.2(C22×C62), (C22×C62).5C3, (C23×C6).17C32, (C2×C18)⋊10(C2×C6), (C22×C6).25(C3×C6), (C3×C6).37(C22×C6), SmallGroup(432,564)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — 3- 1+2 — C2×3- 1+2 — C22×3- 1+2 — C23×3- 1+2 — C24×3- 1+2 |
Generators and relations for C24×3- 1+2
G = < a,b,c,d,e,f | a2=b2=c2=d2=e9=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e4 >
Subgroups: 670 in 536 conjugacy classes, 469 normal (8 characteristic)
C1, C2, C3, C3, C22, C6, C6, C23, C9, C32, C2×C6, C2×C6, C24, C18, C3×C6, C22×C6, C22×C6, 3- 1+2, C2×C18, C62, C23×C6, C23×C6, C2×3- 1+2, C22×C18, C2×C62, C22×3- 1+2, C23×C18, C22×C62, C23×3- 1+2, C24×3- 1+2
Quotients: C1, C2, C3, C22, C6, C23, C32, C2×C6, C24, C3×C6, C22×C6, 3- 1+2, C62, C23×C6, C2×3- 1+2, C2×C62, C22×3- 1+2, C22×C62, C23×3- 1+2, C24×3- 1+2
(1 140)(2 141)(3 142)(4 143)(5 144)(6 136)(7 137)(8 138)(9 139)(10 127)(11 128)(12 129)(13 130)(14 131)(15 132)(16 133)(17 134)(18 135)(19 118)(20 119)(21 120)(22 121)(23 122)(24 123)(25 124)(26 125)(27 126)(28 109)(29 110)(30 111)(31 112)(32 113)(33 114)(34 115)(35 116)(36 117)(37 100)(38 101)(39 102)(40 103)(41 104)(42 105)(43 106)(44 107)(45 108)(46 91)(47 92)(48 93)(49 94)(50 95)(51 96)(52 97)(53 98)(54 99)(55 82)(56 83)(57 84)(58 85)(59 86)(60 87)(61 88)(62 89)(63 90)(64 73)(65 74)(66 75)(67 76)(68 77)(69 78)(70 79)(71 80)(72 81)
(1 50)(2 51)(3 52)(4 53)(5 54)(6 46)(7 47)(8 48)(9 49)(10 37)(11 38)(12 39)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 64)(20 65)(21 66)(22 67)(23 68)(24 69)(25 70)(26 71)(27 72)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(73 118)(74 119)(75 120)(76 121)(77 122)(78 123)(79 124)(80 125)(81 126)(82 109)(83 110)(84 111)(85 112)(86 113)(87 114)(88 115)(89 116)(90 117)(91 136)(92 137)(93 138)(94 139)(95 140)(96 141)(97 142)(98 143)(99 144)(100 127)(101 128)(102 129)(103 130)(104 131)(105 132)(106 133)(107 134)(108 135)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 28)(7 29)(8 30)(9 31)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 25)(17 26)(18 27)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 55)(47 56)(48 57)(49 58)(50 59)(51 60)(52 61)(53 62)(54 63)(73 100)(74 101)(75 102)(76 103)(77 104)(78 105)(79 106)(80 107)(81 108)(82 91)(83 92)(84 93)(85 94)(86 95)(87 96)(88 97)(89 98)(90 99)(109 136)(110 137)(111 138)(112 139)(113 140)(114 141)(115 142)(116 143)(117 144)(118 127)(119 128)(120 129)(121 130)(122 131)(123 132)(124 133)(125 134)(126 135)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)(73 82)(74 83)(75 84)(76 85)(77 86)(78 87)(79 88)(80 89)(81 90)(91 100)(92 101)(93 102)(94 103)(95 104)(96 105)(97 106)(98 107)(99 108)(109 118)(110 119)(111 120)(112 121)(113 122)(114 123)(115 124)(116 125)(117 126)(127 136)(128 137)(129 138)(130 139)(131 140)(132 141)(133 142)(134 143)(135 144)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 22 25)(21 27 24)(28 31 34)(30 36 33)(37 40 43)(39 45 42)(46 49 52)(48 54 51)(55 58 61)(57 63 60)(64 67 70)(66 72 69)(73 76 79)(75 81 78)(82 85 88)(84 90 87)(91 94 97)(93 99 96)(100 103 106)(102 108 105)(109 112 115)(111 117 114)(118 121 124)(120 126 123)(127 130 133)(129 135 132)(136 139 142)(138 144 141)
G:=sub<Sym(144)| (1,140)(2,141)(3,142)(4,143)(5,144)(6,136)(7,137)(8,138)(9,139)(10,127)(11,128)(12,129)(13,130)(14,131)(15,132)(16,133)(17,134)(18,135)(19,118)(20,119)(21,120)(22,121)(23,122)(24,123)(25,124)(26,125)(27,126)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,91)(47,92)(48,93)(49,94)(50,95)(51,96)(52,97)(53,98)(54,99)(55,82)(56,83)(57,84)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,73)(65,74)(66,75)(67,76)(68,77)(69,78)(70,79)(71,80)(72,81), (1,50)(2,51)(3,52)(4,53)(5,54)(6,46)(7,47)(8,48)(9,49)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(73,118)(74,119)(75,120)(76,121)(77,122)(78,123)(79,124)(80,125)(81,126)(82,109)(83,110)(84,111)(85,112)(86,113)(87,114)(88,115)(89,116)(90,117)(91,136)(92,137)(93,138)(94,139)(95,140)(96,141)(97,142)(98,143)(99,144)(100,127)(101,128)(102,129)(103,130)(104,131)(105,132)(106,133)(107,134)(108,135), (1,32)(2,33)(3,34)(4,35)(5,36)(6,28)(7,29)(8,30)(9,31)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,55)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(73,100)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)(81,108)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,97)(89,98)(90,99)(109,136)(110,137)(111,138)(112,139)(113,140)(114,141)(115,142)(116,143)(117,144)(118,127)(119,128)(120,129)(121,130)(122,131)(123,132)(124,133)(125,134)(126,135), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(91,100)(92,101)(93,102)(94,103)(95,104)(96,105)(97,106)(98,107)(99,108)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(127,136)(128,137)(129,138)(130,139)(131,140)(132,141)(133,142)(134,143)(135,144), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,22,25)(21,27,24)(28,31,34)(30,36,33)(37,40,43)(39,45,42)(46,49,52)(48,54,51)(55,58,61)(57,63,60)(64,67,70)(66,72,69)(73,76,79)(75,81,78)(82,85,88)(84,90,87)(91,94,97)(93,99,96)(100,103,106)(102,108,105)(109,112,115)(111,117,114)(118,121,124)(120,126,123)(127,130,133)(129,135,132)(136,139,142)(138,144,141)>;
G:=Group( (1,140)(2,141)(3,142)(4,143)(5,144)(6,136)(7,137)(8,138)(9,139)(10,127)(11,128)(12,129)(13,130)(14,131)(15,132)(16,133)(17,134)(18,135)(19,118)(20,119)(21,120)(22,121)(23,122)(24,123)(25,124)(26,125)(27,126)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,106)(44,107)(45,108)(46,91)(47,92)(48,93)(49,94)(50,95)(51,96)(52,97)(53,98)(54,99)(55,82)(56,83)(57,84)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,73)(65,74)(66,75)(67,76)(68,77)(69,78)(70,79)(71,80)(72,81), (1,50)(2,51)(3,52)(4,53)(5,54)(6,46)(7,47)(8,48)(9,49)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(73,118)(74,119)(75,120)(76,121)(77,122)(78,123)(79,124)(80,125)(81,126)(82,109)(83,110)(84,111)(85,112)(86,113)(87,114)(88,115)(89,116)(90,117)(91,136)(92,137)(93,138)(94,139)(95,140)(96,141)(97,142)(98,143)(99,144)(100,127)(101,128)(102,129)(103,130)(104,131)(105,132)(106,133)(107,134)(108,135), (1,32)(2,33)(3,34)(4,35)(5,36)(6,28)(7,29)(8,30)(9,31)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,55)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63)(73,100)(74,101)(75,102)(76,103)(77,104)(78,105)(79,106)(80,107)(81,108)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,97)(89,98)(90,99)(109,136)(110,137)(111,138)(112,139)(113,140)(114,141)(115,142)(116,143)(117,144)(118,127)(119,128)(120,129)(121,130)(122,131)(123,132)(124,133)(125,134)(126,135), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(91,100)(92,101)(93,102)(94,103)(95,104)(96,105)(97,106)(98,107)(99,108)(109,118)(110,119)(111,120)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(127,136)(128,137)(129,138)(130,139)(131,140)(132,141)(133,142)(134,143)(135,144), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,22,25)(21,27,24)(28,31,34)(30,36,33)(37,40,43)(39,45,42)(46,49,52)(48,54,51)(55,58,61)(57,63,60)(64,67,70)(66,72,69)(73,76,79)(75,81,78)(82,85,88)(84,90,87)(91,94,97)(93,99,96)(100,103,106)(102,108,105)(109,112,115)(111,117,114)(118,121,124)(120,126,123)(127,130,133)(129,135,132)(136,139,142)(138,144,141) );
G=PermutationGroup([[(1,140),(2,141),(3,142),(4,143),(5,144),(6,136),(7,137),(8,138),(9,139),(10,127),(11,128),(12,129),(13,130),(14,131),(15,132),(16,133),(17,134),(18,135),(19,118),(20,119),(21,120),(22,121),(23,122),(24,123),(25,124),(26,125),(27,126),(28,109),(29,110),(30,111),(31,112),(32,113),(33,114),(34,115),(35,116),(36,117),(37,100),(38,101),(39,102),(40,103),(41,104),(42,105),(43,106),(44,107),(45,108),(46,91),(47,92),(48,93),(49,94),(50,95),(51,96),(52,97),(53,98),(54,99),(55,82),(56,83),(57,84),(58,85),(59,86),(60,87),(61,88),(62,89),(63,90),(64,73),(65,74),(66,75),(67,76),(68,77),(69,78),(70,79),(71,80),(72,81)], [(1,50),(2,51),(3,52),(4,53),(5,54),(6,46),(7,47),(8,48),(9,49),(10,37),(11,38),(12,39),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,64),(20,65),(21,66),(22,67),(23,68),(24,69),(25,70),(26,71),(27,72),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(73,118),(74,119),(75,120),(76,121),(77,122),(78,123),(79,124),(80,125),(81,126),(82,109),(83,110),(84,111),(85,112),(86,113),(87,114),(88,115),(89,116),(90,117),(91,136),(92,137),(93,138),(94,139),(95,140),(96,141),(97,142),(98,143),(99,144),(100,127),(101,128),(102,129),(103,130),(104,131),(105,132),(106,133),(107,134),(108,135)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,28),(7,29),(8,30),(9,31),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,25),(17,26),(18,27),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,55),(47,56),(48,57),(49,58),(50,59),(51,60),(52,61),(53,62),(54,63),(73,100),(74,101),(75,102),(76,103),(77,104),(78,105),(79,106),(80,107),(81,108),(82,91),(83,92),(84,93),(85,94),(86,95),(87,96),(88,97),(89,98),(90,99),(109,136),(110,137),(111,138),(112,139),(113,140),(114,141),(115,142),(116,143),(117,144),(118,127),(119,128),(120,129),(121,130),(122,131),(123,132),(124,133),(125,134),(126,135)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72),(73,82),(74,83),(75,84),(76,85),(77,86),(78,87),(79,88),(80,89),(81,90),(91,100),(92,101),(93,102),(94,103),(95,104),(96,105),(97,106),(98,107),(99,108),(109,118),(110,119),(111,120),(112,121),(113,122),(114,123),(115,124),(116,125),(117,126),(127,136),(128,137),(129,138),(130,139),(131,140),(132,141),(133,142),(134,143),(135,144)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,22,25),(21,27,24),(28,31,34),(30,36,33),(37,40,43),(39,45,42),(46,49,52),(48,54,51),(55,58,61),(57,63,60),(64,67,70),(66,72,69),(73,76,79),(75,81,78),(82,85,88),(84,90,87),(91,94,97),(93,99,96),(100,103,106),(102,108,105),(109,112,115),(111,117,114),(118,121,124),(120,126,123),(127,130,133),(129,135,132),(136,139,142),(138,144,141)]])
176 conjugacy classes
class | 1 | 2A | ··· | 2O | 3A | 3B | 3C | 3D | 6A | ··· | 6AD | 6AE | ··· | 6BH | 9A | ··· | 9F | 18A | ··· | 18CL |
order | 1 | 2 | ··· | 2 | 3 | 3 | 3 | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 3 | 3 | 1 | ··· | 1 | 3 | ··· | 3 | 3 | ··· | 3 | 3 | ··· | 3 |
176 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 |
type | + | + | ||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | 3- 1+2 | C2×3- 1+2 |
kernel | C24×3- 1+2 | C23×3- 1+2 | C23×C18 | C22×C62 | C22×C18 | C2×C62 | C24 | C23 |
# reps | 1 | 15 | 6 | 2 | 90 | 30 | 2 | 30 |
Matrix representation of C24×3- 1+2 ►in GL6(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
18 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
0 | 0 | 0 | 1 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,11,0],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,7] >;
C24×3- 1+2 in GAP, Magma, Sage, TeX
C_2^4\times 3_-^{1+2}
% in TeX
G:=Group("C2^4xES-(3,1)");
// GroupNames label
G:=SmallGroup(432,564);
// by ID
G=gap.SmallGroup(432,564);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,347,537]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^9=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^4>;
// generators/relations